In the United States Patent and Trademark Office

Before the Patent Trial and Appeal Board

FLATWING PHARMACEUTICALS, LLC,
Petitioner,

v.

ANACOR PHARMACEUTICALS, INC.,
Patent Owner

U.S. Patent No. 9,566,289 to Baker et al.
Ser. No. 15/046,322, filed February 17, 2016
Issue Date: February 14, 2017

Title: BORON-CONTAINING SMALL MOLECULES

Inter Partes Review No. 2018-00169

PETITION FOR INTER PARTES REVIEW OF U.S. PATENT NO. 9,566,289
INTRODUCTION .. 1

GROUNDS FOR STANDING .. 1

BACKGROUND .. 2

I. Scope And Content Of The Prior Art ... 2
 A. Boron-Containing Compounds In General... 2
 B. Prior Art Patents And Printed Publications ... 4
1. Austin...5
2. Brehove..7
3. Freeman ..12
4. Samour ...16

II. Level of Ordinary Skill in the Art ...18

III. The ’289 Patent Prosecution History...19

IDENTIFICATION OF THE CHALLENGE ...24

I. The Claims Challenged ...24

II. Specific Grounds And Art. ..26

III. Claim Construction ..27

IV. How the claims are unpatentable...29

A. Explanation Of Ground 1 For Unpatentability: Claims 1 & 2 of the ’289 Patent are Obvious Over Austin in View of Brehove31

1. All Elements of Claims 1 & 2 are Obvious Over Austin in View of Brehove ...31

2. A POSITA Would Have Had Reason to Combine Austin and Brehove ..33

3. A POSITA Would Have Had a Reasonable Expectation of Success in Combining Austin and Brehove36

B. Explanation Of Ground 2 For Unpatentability: Claims 4–7 & 10–11 of the ’289 Patent are Obvious Over Austin in View of Brehove and Samour ..41

1. All Elements of Claims 4–7 & 10–11 are Obvious Over Austin in View of Brehove and Samour ..41

2. A POSITA Would Have Had Reason to Combine Austin,
Brehove, and Samour and Would Have had a Reasonable Expectation of Success in Combining the Same44

1. All Elements of Claims 3, 8–9 & 12–15 of the ’289 Patent are Obvious Over Austin in View of Brehove, Samour, and the Excipients Handbook...47

2. A POSITA Would Have Had Reason to Combine Austin, Brehove, Samour, and the Excipients Handbook and Would Have had a Reasonable Expectation of Success in Combining the Same...50

D. Explanation Of Ground 4 For Unpatentability: Claims 1 & 2 of the ’289 Patent are Obvious Over Austin in View of Freeman51

1. All Elements of Claims 1 & 2 are Obvious Over Austin in View of Freeman ...51

2. A POSITA Would Have Had Reason to Combine Austin and Freeman ..53

3. A POSITA Would Have Had a Reasonable Expectation of Success in Combining Austin and Freeman56

E. Explanation Of Ground 5 For Unpatentability: Claims 4–7 & 10–11 of the ’289 Patent are Obvious Over Austin in View of Freeman and Samour ...59

F. Explanation Of Ground 6 For Unpatentability: Claims 3, 8–9 & 12–15 of the ’289 Patent are Obvious Over Austin in View of Freeman, Samour, and the Excipients Handbook...60

G. No Secondary Considerations Overcome This Strong Showing of Obviousness...61

CONCLUSION ...62
TABLE OF AUTHORITIES

CASES

Hoffmann-La Roche Inc. v. Apotex Inc., 748 F.3d 1326 (Fed. Cir. 2014) 30

In re Baxter Travenol Labs., 952 F.2d 388 (Fed. Cir. 1991) .. 62

In re Bigio, 381 F.3d 1320 (Fed. Cir. 2004) ... 30

In re Clay, 966 F.2d 656 (Fed. Cir. 1992) .. 30

In re Gershon, 372 F.2d 535 (CCPA 1967) ... 62

In re ICON Health & Fitness, Inc., 496 F.3d 1374 (Fed. Cir. 2007) 30, 31

In re Merck & Co., 800 F.2d 1091 (Fed. Cir. 1986) .. 32

In re Piasecki, 745 F.2d 1468 (Fed. Cir. 1984) .. 61

Innovation Toys, LLC v. MGA Entm’t, Inc., 637 F.3d 1314 (Fed. Cir. 2011) 30

Kao Corp. v. Unilever United States, Inc., 441 F.3d 963 (Fed. Cir. 2006) 61

Okajima v. Bourdeau,
261 F.3d 1350 (Fed. Cir. 2001) ... 19

PAR Pharm., Inc. v. TWi Pharms., Inc.,
773 F.3d 1186 (Fed. Cir. 2014) ... 30

950 F.2d 714 (Fed. Cir. 1991) ... 61

Scientific Plastic Products, Inc. v. Biotage AB,
766 F.3d 1355 (Fed. Cir. 2014) ... 31

Unwired Planet, LLC v. Google Inc.,
841 F.3d 995 (Fed. Cir. 2016) ... 30

Wyers v. Master Lock Co.,
616 F.3d 1231 (Fed. Cir. 2010) ... 61

STATUTES

35 U.S.C. § 102 .. 24, 26

35 U.S.C. § 103 .. 24, 26, 29

35 U.S.C. § 316 .. 24

35 U.S.C. §§ 311–319 ... 1

REGULATIONS

37 C.F.R. § 42 et. seq. .. passim
EXHIBIT LIST

Pursuant to 37 C.F.R. § 42.63(e), petitioner provides the following exhibit list with the exhibit number, a brief description of each exhibit, and where applicable the short form used herein.

<table>
<thead>
<tr>
<th>EXHIBIT</th>
<th>DESCRIPTION</th>
<th>SHORT FORM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ex. 1001</td>
<td>U.S. Patent No. 9,566,289</td>
<td>’289 Patent</td>
</tr>
<tr>
<td>Ex. 1002</td>
<td>Prosecution History of the ’289 Patent</td>
<td></td>
</tr>
<tr>
<td>Ex. 1003</td>
<td>Declaration of Stephen Kahl, Ph.D</td>
<td>Kahl Decl.</td>
</tr>
<tr>
<td>Ex. 1004</td>
<td>Curriculum Vitae of Stephen Kahl, Ph.D</td>
<td></td>
</tr>
<tr>
<td>Ex. 1005</td>
<td>Declaration of S. Narasimha Murthy, Ph.D</td>
<td>Murthy Decl.</td>
</tr>
<tr>
<td>Ex. 1006</td>
<td>Curriculum Vitae of S. Narasimha Murthy, Ph.D</td>
<td></td>
</tr>
<tr>
<td>Ex. 1007</td>
<td>Austin et al., PCT Pub. No. WO 1995/033754</td>
<td>Austin</td>
</tr>
</tbody>
</table>

1 As indicated in Petitioner’s mandatory disclosure of related matters, *infra* at x, this petition is one of four that Petitioner has filed concurrently, requesting *inter partes* review of U.S. Patents Nos. 9,549,938 B2, 9,566,289 B2, 9,566,290 B2, and 9,572,823 B2. To avoid confusion, Petitioner has numbered the same or corresponding exhibits consistently across all four Petitions, and in each filing has omitted Exhibits not discussed in that Petition.
<table>
<thead>
<tr>
<th>EXHIBIT</th>
<th>DESCRIPTION</th>
<th>SHORT FORM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ex. 1010</td>
<td>Samour et al., U.S. Patent No. 6,224,887</td>
<td>Samour</td>
</tr>
<tr>
<td>Ex. 1012</td>
<td>U.S. Patent No. 7,582,621</td>
<td>’621 Patent</td>
</tr>
<tr>
<td>Ex. 1013</td>
<td>Prosecution History of the ’621 Patent</td>
<td></td>
</tr>
<tr>
<td>Ex. 1015</td>
<td>U.S. Patent No. 7,767,657</td>
<td>’657 Patent</td>
</tr>
<tr>
<td>Ex. 1016</td>
<td>Prosecution History of the ’657 Patent</td>
<td></td>
</tr>
<tr>
<td>Ex. 1019</td>
<td>U.S. Patent No. 4,202,894</td>
<td>’894 Patent</td>
</tr>
<tr>
<td>Ex. 1023</td>
<td>Remington: The Science and Practice of Pharmacy (Lippincott Williams & Wilkins eds., 21st ed. 2005)</td>
<td></td>
</tr>
<tr>
<td>EXHIBIT</td>
<td>DESCRIPTION</td>
<td>SHORT FORM</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
<td>------------</td>
</tr>
<tr>
<td>EXHIBIT</td>
<td>DESCRIPTION</td>
<td>SHORT FORM</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
<td>------------</td>
</tr>
<tr>
<td>Ex. 1035</td>
<td>Aldrich Handbook of Fine Chemicals and Laboratory Equipment (Sigma-Aldrich, 2004)</td>
<td></td>
</tr>
<tr>
<td>Exs. 1036–1042</td>
<td>Intentionally omitted- Exhibit numbers not used</td>
<td></td>
</tr>
</tbody>
</table>
MANDATORY NOTICES

Petitioner provides the following mandatory disclosures pursuant to 37 C.F.R. § 42.8, which are excluded from the petition type-volume limitations pursuant to § 42.24.

1. **Real Parties-In-Interest, § 42.8(b)(1)**

The real parties-in-interest are FlatWing Pharmaceuticals, LLC, Rajneesh Ahuja, and Wicker Pharmaceuticals, LLC (collectively “FlatWing” or “Petitioner”).

2. **Related Matters, § 42.8(b)(2).**

There are no judicial matters pending that would affect, or be affected by, a decision in the proceeding.

Administrative matters that would or could affect or be affected by a decision in a proceeding instituted on this petition are United States Patent Applications Ser. No. 15/355,393 and Ser. No. 15/355,813.

This petition is one of four petitions that Petitioner has filed concurrently, requesting *inter partes* review of U.S. Patents Nos. 9,549,938 B2, 9,566,289 B2, 9,566,290 B2, and 9,572,823 B2. Docket numbers for those P.T.A.B. proceedings are not yet available, but each of the four would or could affect, or be affected by, a decision in any of the other three proceedings.
In addition, although not currently subject to administrative proceedings that would affect or be affected by a decision in a proceeding instituted on this petition, issued patents which assert the same claim of priority as U.S. Patent No. 9,566,289 and have substantially the same specification are:

- U.S. Patent No. 7,582,621
- U.S. Patent No. 7,767,657
- U.S. Patent No. 8,039,451
- U.S. Patent No. 8,115,026
- U.S. Patent No. 8,440,642
- U.S. Patent No. 8,722,917
- U.S. Patent No. 8,889,656
- U.S. Patent No. 9,353,133
- U.S. Patent No. 9,549,938
- U.S. Patent No. 9,572,823

3. **Lead and Back-Up Counsel, § 42.8(b)(3)**

The following are designated as lead counsel and back-up counsel, pursuant to 37 C.F.R. § 42.10. A Power of Attorney is being filed concurrently herewith.

Lead counsel is:

Philip D. Segrest, Jr. (Reg. No. 39,021)

Back-up counsel is:
4. **Service Information, § 42.8(b)(4)**

Papers concerning this matter should be served on the following:

(i) Electronic Mailing Address

Petitioner consents to service by email at:

Philip.Segrest@HuschBlackwell.com
Eric.Rakestraw@HuschBlackwell.com
PTAB-ERakestraw@HuschBlackwell.com

(ii) Postal Mailing Address

HUSCH BLACKWELL, LLP
Attn: Philip D. Segrest, Jr.
120 South Riverside Plaza
Suite 2200
Chicago, Illinois 60606

(iii) Hand-Delivery Address

Same as postal mailing address.

(iv) Telephone number

(312) 655-1500

(v) Facsimile Number

(312) 655-1501
INTRODUCTION

FlatWing requests *inter partes* review under 35 U.S.C. §§ 311–319 and cancellation of claims 1–15 of U.S. Patent No. 9,566,289 (‘’289 patent,’’ Ex. 1001). The Office is authorized to charge petition fees and deficiencies to Deposit Acct. No. 23-0920, Cust. ID No. 24628. The ’289 Patent which relates to pharmaceutical formulations comprising tavaborole is invalid over prior art which taught the use of the claimed compound as a fungicide for which a person of ordinary skill in the art (“POSITA”) would have had a reasonable expectation of success.

GROUND FOR STANDING

Petitioner certifies pursuant to 37 C.F.R. § 42.104(a) that the ’289 patent is available for *inter partes* review and that Petitioner is not estopped or barred from requesting *inter partes* review challenging the identified ’289 patent claims on the grounds identified herein. Petitioner is a person who may petition for *inter partes* review under 37 C.F.R. § 42.101, and this petition is timely under 37 C.F.R. § 42.102.
BACKGROUND

I. Scope And Content Of The Prior Art

A. Boron-Containing Compounds In General.

Boron-containing compounds were well known to a person of ordinary skill in the art (“POSITA”) before February 16, 2005. (Ex. 1003, Kahl Decl. ¶ 30.) Dr. Kahl (one of petitioner’s declarants) has been studying boron-containing compounds as therapeutic agents for over 45 years (as have others of skill in the art), including the administration of boron-containing compounds to humans as a treatment. (Ex. 1003, Kahl Decl. ¶ 30.)

Groziak 2001 (Ex. 1032) reviews the then-current research and development concerning boron-based therapeutics for use in humans. (Ex. 1032, Groziak 2001 at 1–2; Ex. 1003, Kahl Decl. ¶ 31.) In particular, Groziak 2001 recognized that it was “not at all surprising to find that most of the boron-based therapeutics currently on the horizon are either boronic acids themselves or boron heterocycles that are simply internally complexed versions of boronic acids.” (Ex. 1032 at 2; Ex. 1003, Kahl Decl. ¶ 31.) Dr. Kahl explains that the statement in Groziak 2001 is

2 Throughout this Petition, page citations refer to the consecutive page numbers added in the exhibit label. Paragraph, column, and line number citations refer to the numbering system used in the original document.
correct, because boronic acids and boron heterocycles often share similar functional properties based on the unique chemical properties of boron itself. (Ex. 1003, Kahl Decl. ¶ 31.)

Boron-containing compounds are generally considered safe. (Ex. 1003, Kahl Decl. ¶ 32.) One notable exception is trialkylboranes, which are compounds with the general formula BR₃ where R is an alkyl group. (Ex. 1003, Kahl Decl. ¶ 32.) Trialkylboranes can spontaneously combust under certain conditions. (Ex. 1003, Kahl Decl. ¶ 32.) The oxaboroles disclosed by the art discussed infra such as Austin³ are not trialkylboranes, and a POSITA would recognize that the boron-containing compounds of Austin are generally considered safe. (Ex. 1003, Kahl Decl. ¶ 32.)

Dr. Kahl explained there is no reason a POSITA would have been discouraged from selecting an oxaborole as disclosed by Austin for consideration as a topical therapeutic in humans. (Ex. 1003, Kahl Decl. ¶ 33; see also Ex. 1014, IPR ’776, FWD at 27; Ex. 1017, IPR ’780, FWD at 33–34; Ex. 1018, IPR ’785, FWD at 30.) As further explained infra and in Dr. Kahl’s declaration (Ex. 1003), based on Austin’s disclosure of tavaborole⁴ as one of three preferred anti-fungal

⁴ Tavaborole is referred to as 1,3-dihydro-5-fluoro-1-hydroxy-2,1-benzoxaborole in
compounds for the treatment of *Candida albicans*, a POSITA would (i) consider
the compound as obvious to try as a starting point for developing a topical
composition to treat fungal infections and (ii) have a reasonable expectation of
success in doing so. (Ex. 1003, Kahl Decl. ¶ 33.)

B. Prior Art Patents And Printed Publications.

Not all boron-based compounds are bioactive. (Ex. 1003, Kahl Decl. ¶ 34.)
If a molecule is known to be bioactive against a fungus such as *Candida albicans*
(which is a cause of onychomycosis), a POSITA would consider that molecule as
obvious to try for therapeutic use in humans. (Ex. 1003, Kahl Decl. ¶ 34.) A
POSITA would have been particularly motivated to try such a compound when
other prior art (such as *Brehove*\(^5\) and *Freeman*\(^6\), *infra*) demonstrates that boron-
based compounds are effective against the pathogens that cause onychomycosis,
including *Candida albicans* and dermatophytes. (Ex. 1003, Kahl Decl. ¶ 34.)

the ’289 patent and as 5-fluoro-1,3-dihydro-1-hydroxy-2,1-benzoxaborole in
Austin, both of which are the same compound. *See, e.g.*, Ex. 1014, IPR ’776, FWD
at 7.

\(^6\) Ex. 1009, Freeman *et al.*, PCT Pub. No. WO 2003/009689 (“*Freeman*”).
1. *Austin*\(^7\)

Austin (Ex. 1007) discloses just such bioactivity with its three preferred compounds, in particular tavaborole, making it obvious to try for therapeutic use in humans. (Ex. 1007, *Austin* at 39; Ex. 1003, Kahl Decl. ¶ 35.) It is the exact same compound claimed for use in the ’289 Patent and was not novel in February 2005. (Ex. 1003, Kahl Decl. ¶ 35; Ex. 1005, Murthy Decl. ¶ 60.)\(^7\)

Austin not only discloses “5- and 6-fluoro or bromo-1,3 dihydro-1hydroxy-2,1-benoxaborole” (which includes tavaborole), it includes tavaborole among “[p]referred compounds” on the front page of the publication. (Ex. 1007, *Austin* at [57] (Abstract); Ex. 1003, Kahl Decl. ¶ 36; Ex. 1005, Murthy Decl. ¶ 60.) In Table 9, it reports the antifungal bioactivity of the 5-fluoro (Example 64), 5-bromo (Example 68), and 6-fluoro (Example 70) compounds. (Ex. 1007, *Austin* at 39; Ex. 1003, Kahl Decl. ¶ 36; Ex. 1005, Murthy Decl. ¶ 63.) Of the preferred compounds, tavaborole (5-fluoro-1,3-dihydro-1-hydroxy-2,1-benoxaborole) demonstrated the lowest Minimum Inhibitory Concentration (“MIC”) values, as low as five (5) parts per million (“ppm”), against several pathogens, including *Candida albicans*. (Ex. 1007, *Austin* at 39; Ex. 1003, Kahl Decl. ¶ 36; Ex. 1005, Murthy Decl. ¶ 63.) In other words, of the three preferred compounds tested, tavaborole inhibited the

\(^{7}\) *Supra*, n.3.
visible growth of *Candida albicans* (a fungus that causes onychomycosis, sometimes in conjunction with dermatophytes) at the lowest level of concentration. *Austin* further discloses that compounds containing an “oxaborole ring” are “particularly effective” as fungicides. (Ex. 1007, *Austin* at 3:35–40, 12:16–19, 39; Ex. 1005, Murthy Decl. ¶¶ 60, 65.)

Austin also discloses preparation of benzoxaborole derivatives, specifically teaches tavaborole, even including its melting point and elemental analysis, and formulations including tavaborole. (Ex. 1007, *Austin* at 24:1–15, 25 [Table 5], and 38:15–26; Ex. 1005, Murthy Decl. ¶ 61.) *Austin* further teaches that the “concentration of the oxaborole in the biocide composition is . . . preferably from 1 to 50%, especially from 5 to 30% and more especially from 10 to 20% by weight relative to the total weight of the biocide composition.” (Ex. 1007, *Austin* at 9:5–9; Ex. 1005, Murthy Decl. ¶ 63.) *Austin* provides that “oxaborole . . . is preferably formulated in a composition together with a carrier,” carriers including “water or a water-miscible organic solvent,” where “suitable water-miscible organic solvents are . . . alcohols such as ethanol or glycols such as . . . propylene glycol.” (Ex. 1007, *Austin* at 8:11–38; Ex. 1005, Murthy Decl. ¶ 63.)

Thus, *Austin* discloses a biocide composition formulated with tavaborole as a preferred fungicide to effectively inhibit onychomycosis-causing *Candida albicans*, in carriers including water-miscible solvents, such as ethanol and
propylene glycol, at preferred concentrations of 5 to 30% and 10 to 20% by weight relative to the total weight of the biocide composition. (Ex. 1007, Austin at 8:34–39, 9:5–9; Ex. 1005, Murthy Decl. ¶¶ 64, 66.) As of February 16, 2005, a POSITA would consider the preferred compound of Austin, the same compound recited in claims 1–15 of the ‘289 Patent, obvious to try to successfully treat onychomycosis in humans based on its disclosed anti-fungal activity and structural similarities, e.g., boron-based cyclic compounds. (Ex. 1003, Kahl Decl. ¶ 45.)

2. **Brehove**

Brehove is a U.S. patent application publication that disclosed the use of boron-containing compounds as anti-fungal agents to treat onychomycosis in humans more than a year before the priority date of February 16, 2005. (Ex. 1003, Kahl Decl. ¶ 37; Ex. 1005, Murthy Decl. ¶¶ 67–68.) *Brehove* disclosed the effective use of the following boron-containing compounds to treat onychomycosis in humans:

8 *Supra*, n.5.
Brehove discloses the topical application of boron-based compounds to “treat and prevent the spread of nail infections or onychomycosis caused by bacteria, fungi and other pathogens.” (Ex. 1008, Brehove at [57] (Abstract), ¶[0003]; Ex. 1005, Murthy Decl. ¶68.) Brehove taught preparing topical compositions containing these boron-based compounds were “highly effective” to successfully treat humans suffering from onychomycosis. (See, e.g., Ex. 1008, Brehove ¶¶[0030]–[0038]; Ex. 1003, Kahl Decl. ¶40; Ex. 1005, Murthy Decl. ¶71.) This is the same pathogen inhibited in Austin with a boron-based compound. (Ex. 1003, Kahl Decl. ¶40.)

Not only did Brehove successfully treat humans with this boron-based compound, the compound was commercially sold as an industrial biocide for fuel under the trade name BioborJF®. (Exs. 1021, 1022; Ex. 1003, Kahl Decl. ¶40.) These compounds were previously sold commercially in antifungal additives for leaded motor fuels in order to improve combustion efficiency, and U.S. Patent No. 2,741,548 had taught their synthesis. (Ex. 1008, Brehove ¶¶[0015], [0023]; Ex. 1005, Murthy Decl. ¶70.) These compounds had been used under the trade name BioborJF® as an antifungal fuel additive since 1965. (See Exs. 1021, 1022; Ex. 1005, Murthy Decl. ¶70.) The BioborJF® specification sheet explains:
BioborJF® was specially formulated and introduced in 1965 to one of the harshest and most safety-conscious industries in the world, the commercial and military jet aircraft industry. For over 45 years BioborJF® has maintained and even enhanced its position as the worldwide leader in the disinfection of microbial growth in both jet engines and jet fuel storage tanks, in addition to the marine diesel work boat and pleasure boat markets.

(Ex. 1021 at 1; Ex. 1005, Murthy Decl. ¶ 70.) BioborJF® is a recognized antifungal for industrial applications.

(Ex. 1021 at 1; Ex. 1005, Murthy Decl. ¶ 70.) The material safety datasheet for BioborJF® from January 1, 2004, discloses its active ingredients as 2,2’-(1-methyltrimethylene dioxy) bis-(4-methyl-1,3,2-dioxaborinane) and/or 2,2’-oxybis (4,4,6-trimethyl-1,3,2-dioxaborinane), the very same compounds used to treat onychomycosis in humans by Brehove:
Brehove specifically applied topical compositions containing the active ingredient in BioborJF® to five volunteers who presented with onychomycosis.

(Ex. 1008, Brehove ¶¶[0034]–[0038]; Ex. 1005, Murthy Decl. ¶ 72.) In all five examples, the topical application of the compositions directly to the infected nail, or cuticle surrounding the infected nail, effectively treated the onychomycosis with “[n]o skin irritation” seen or observed, and the patent stated “no side effects are evident.” (Ex. 1008, Brehove ¶¶[0022], [0030], [0034]–[0038]; Ex. 1005, Murthy Decl. ¶ 72.)

Brehove further describes a number of topical formulations of the boron-based compounds, including “[o]ne formulation [that] is conveniently applied nightly in a petroleum jelly or mineral oil base”; “[d]ilute compositions of the active compounds in alcohol or acetone base [that have] the ability to deliver concentrated active ingredient as the solvent evaporates”; and “[a]nother formulation [that] is conveniently applied once per week in a cellulose acetate lacquer base.” (Ex. 1008, Brehove ¶[0018]; Ex. 1005, Murthy Decl. ¶ 73.)
Brehove provides that the active ingredient may be combined with a “penetration enhancer” that “increases the permeability of the skin to a drug,” (Ex. 1008, *Brehove* ¶[0027]; Ex. 1005, Murthy Decl. ¶74) and, in at least some formulations, the “mineral oil, petroleum jelly and paraffin wax help protect the skin against irritation or drying and serve as a reservoir for the active ingredient permitting extended continuous diffusion and penetration into the nail.” (Ex. 1008, *Brehove* ¶[0025]; Ex. 1005, Murthy Decl. ¶74.)

Brehove also provides that the active fungicidal ingredient may be combined with an organic film former, and that “[m]any suitable film-forming polymers are known.” (Ex. 1008, *Brehove* at ¶[0026]; Ex. 1005, Murthy Decl. ¶75.)

Brehove teaches the effectiveness of its organo-boron compounds against *Candida albicans* at concentrations “between 0.1 wt% and 25 wt% of the composition.” (Ex. 1008, *Brehove* ¶[0032], Table 1, Claim 14; Ex. 1005, Murthy Decl. ¶76.)

Thus, *Brehove* taught a boron-based industrial fungicide to treat humans. (Ex. 1003, Kahl Decl. ¶40.) This is real world proof that a POSITA would not be discouraged, and would in fact select a boron-based industrial fungicide for use in humans to treat onychomycosis. (Ex. 1003, Kahl Decl. ¶40.) It discloses topical formulations of boron-based compounds, which were previously used as leaded fuel additives, for application directly to the nail and surrounding skin of humans.
to effectively treat onychomycosis. (Ex. 1008, Brehove ¶¶ [0005], [0018], [0034]-[0038]; Ex. 1005, Murthy Decl. ¶ 78.)

3. Freeman

Freeman is an international patent application publication that discloses the use of boron-containing compounds as anti-fungal agents to treat onychomycosis safely and effectively in humans. (Ex. 1003, Kahl Decl. ¶ 37; Ex. 1005, Murthy Decl. ¶ 79.) It disclosed “methods and compositions for treating fungal infections, and more particularly, dermatophytoses or on[y]chomycosis of the fingernail and the toenail” with phenyl boronic acid and derivatives thereof. (Ex. 1009, Freeman ¶¶ [001], [0022]; Ex. 1005, Murthy Decl. ¶ 80.)

Freeman disclosed the effective use of the boron-containing compounds to treat onychomycosis in humans, including the following disclosed compounds:

(Ex. 1009, Freeman ¶ [0062]; Ex. 1003, Kahl Decl. ¶ 41.)

Freeman discloses the treatment of onychomycosis using boron-based compounds: “[i]t has now been discovered that phenyl boronic acid and derivatives

9 Supra, n.6.
thereof as well as related boronic acid compounds have fungicidal properties, and that these compounds are particularly useful in treating fungal infections.” (Ex. 1009, Freeman ¶[022]; Ex. 1003, Kahl Decl. ¶43; Ex. 1005, Murthy Decl. ¶82.) It also teaches that these compounds have been found to be “particularly useful in treating nail fungal infections.” (Ex. 1009, Freeman ¶[022]; Ex. 1003, Kahl Decl. ¶43; Ex. 1005, Murthy Decl. ¶82.)

Phenyl boronic acid (“PBA”) is a common compound and has the following structure:

(Ex. 1009, Freeman ¶¶[0029]–[0034]; Ex. 1005, Murthy Decl. ¶82.) Along with PBA, Freeman discloses a pentafluoro PBA and a fluoro PBA, both derivatives of PBA, which have the following structures:
(Ex. 1009, *Freeman* ¶[0062] (“R₁, R₂, R₃, R₄, and R₅” are all fluorine or “R₃” is fluorine and the remaining substituents are hydrogen.); Ex. 1005, Murthy Decl. ¶82.)

“*Freeman* specifically discloses the topical administration of compositions containing PBA or its derivatives to the skin or nails of a human for the treatment of onychomycosis. (Ex. 1009, *Freeman* ¶[0030] (disclosing “in the form of a buffered solution, lotion, or ointment. . . . once daily until cure”), ¶[0068] (“The form of the cosmetic composition can be a powder, lotion, gel, spray, stick, cream, ointment, liquid, emulsion, foam or aerosol.”); see also Ex. 1009, *Freeman* ¶¶[0053], [0064–65]; Ex. 1005, Murthy Decl. ¶83; Ex. 1003, Kahl Decl. ¶44.)

With respect to pharmaceutical formulations, *Freeman* provides

“...The pharmacologically active compounds of this invention can be processed in accordance with conventional methods of pharmacy to produce medicinal agents for administration to patients, e.g., mammals including human beings. For example, the compounds of formula (I) can be employed in admixtures with conventional
excipients, e.g., pharmaceutically acceptable carrier substances suitable for topical application which do not deleteriously react with the active compounds.”

(Ex. 1009, Freeman ¶[0037]; Ex. 1005, Murthy Decl. ¶84.) Specifically, Freeman describes “[s]uitable pharmaceutically acceptable carriers include but are not limited to water . . . alcohols . . . polyethylene glycols, etc.” (Ex. 1009, Freeman ¶[0038]; Ex. 1005, Murthy Decl. ¶84.)

Freeman discloses that in using phenylboronic acid derivatives in treating onychomycosis, “[t]he PBA compound will be present in the overall formulation in amounts ranging from about 0.1% to about 100% by weight, depending upon the use of the formulation. In most uses . . . ranges from about 2% to about 50% are most preferred. (Ex. 1009, Freeman ¶[0064]; Ex. 1005, Murthy Decl. ¶85.)

Freeman therefore discloses the topical application of compositions including PBA, or derivatives thereof, directly to the skin or nail of a human with onychomycosis to effectively treat onychomycosis. (See Ex. 1009, Freeman ¶[008]; Ex. 1005, Murthy Decl. ¶83.) Like Brehove, Freeman is real-world proof that a POSITA would not be discouraged, and would in fact select a boron-based compound for use in humans to treat onychomycosis. (Ex. 1003, Kahl Decl. ¶44.)
4. Samour10

Like Brehove and Freeman, Samour discloses a topical formulation for treating onychomycosis in humans. (Ex. 1010, Samour at [57] (Abstract), col. 1:23–35; Ex. 1005, Murthy Decl. ¶ 87.) Specifically, Samour discloses “improvements in the physical properties (e.g., durability, water-resistance, flexibility) of water-insoluble adherent films . . . of [a] nail lacquer composition, as well as improved diffusion characteristics of active principle(s) included in the lacquer composition from the resulting film.” (Ex. 1010, Samour col. 3:59–65; Ex. 1005, Murthy Decl. ¶ 87.)

In particular, Samour discloses topical fungicidal compositions including some or all of the following: “(a) at least one antifungal agent . . .; (b) penetration enhancing agent . . .; (c) water-insoluble, film-forming polymer; and (d) volatile solvent” (Ex. 1010, Samour col. 3:13–29; Ex. 1005, Murthy Decl. ¶ 88.)

Samour also discloses that its lacquer formulations may include “[o]ther conventional additives customarily present in cosmetic or medicinal nail lacquers . . . in their usual amounts as long as they do not interfere with the diffusion of the active principles and other parameters of the lacquer composition and dried-polymer-film.” (Ex. 1010, Samour col. 10:57–62; Ex. 1005, Murthy Decl. ¶ 87.)

10 Ex. 1010, Samour et al., U.S. Patent No. 6,224,887 (“Samour”).
Decl. ¶ 89). One such class of conventional additive identified by *Samour* is chelating agents. (Ex. 1010, *Samour* col. 10:62–65; Ex. 1005, Murthy Decl. ¶ 89).

In formulation, *Samour* provides that “amounts of active antifungal agent [e.g., econazole] . . . range . . . from about 0.5 to 20 percent by weight, preferably from about 1 to 10 percent, by weight.” (Ex. 1010, *Samour* col. 12:9–14, col. 16:40–62; Ex. 1005, Murthy Decl. ¶ 90.)

Samour describes formulations including “[f]ilm-forming polymers . . . such as . . . methylvinyl ether copolymers sold . . . under the tradename Gantrez, e.g., . . . Gantrez ES-425 [i.e., poly(vinyl methyl ether-alt-maleic acid monobutyl ester)].” (Ex. 1010, *Samour* col. 7:54–62; see Ex. 1025; Ex. 1005, Murthy Decl. ¶¶ 89, 91.) *Samour* provides that “satisfactory results are obtained when the amount of film-forming polymer is in the range . . . preferably from about 15 to about 50 percent, especially from about 20 to 40 percent by weight of the total nail lacquer composition.” (Ex. 1010, *Samour* col. 8:39–44; Ex. 1005, Murthy Decl. ¶ 91.) *Samour* further discloses that “[c]onventional plasticizers compatible (e.g., forming a homogenous film) with film-forming polymers may be included in the compositions of this invention,” and that “[s]uitable plasticizers include . . . propylene glycol.” (Ex. 1010, *Samour* col. 8:58–col. 9:4; Ex. 1005, Murthy Decl. ¶ 91.)
Samour also identifies a number of “physiologically safe organic solvents,” including ethanol, especially anhydrous ethanol (EtOH), ethyl acetate, and mixtures thereof. (Ex. 1010, Samour col. 9:31–49; Ex. 1005, Murthy Decl. ¶ 92.)

Samour discloses its lacquer formulation as being suitable for once-a-day administration for nail treatment. (Ex. 1010, Samour col. 10:1–7, col. 11:16–27; Ex. 1005, Murthy Decl. ¶ 93).

In its Example 6, Samour discloses a lacquer formulation including 65% ethanol, 24% film-forming polymer (Eudragit RL), 6% Propylene Glycol, and 5% active fungicidal ingredient (econazole). (Ex. 1010, Samour col. 21:41–col. 22:18; Ex. 1005, Murthy Decl. ¶ 94).

In its Examples 7 and 8, Samour discloses lacquer formulations including 71% ethanol, 24% film-forming polymer (Eudragit RL), and 5% active fungicidal ingredient (econazole). (Ex. 1010, Samour col. 22:20–col. 24:22; Ex. 1005, Murthy Decl. ¶ 95.)

II. Level of Ordinary Skill in the Art

A person of ordinary skill in the art at the time of the alleged invention would have an either a Master’s or Ph.D. degree in chemistry, pharmacology, or biochemistry, and at least two years of experience in research, development, or production of pharmaceuticals. (Ex. 1005, Murthy Decl. ¶¶ 19–21; Ex. 1003, Kahl Decl. ¶ 22.) In addition, the prior art cited and discussed above is representative of
the level of ordinary skill in the art. See Okajima v. Bourdeau, 261 F.3d 1350, 1355 (Fed. Cir. 2001). In previous *inter partes* reviews, the Board determined that this art “is consistent with Petitioner’s broader description of the level of ordinary skill in the art” and no “additional experience in mycology, clinical dermatology, medicinal chemistry, the development of drug candidates for treating onychomycosis, and the assessment of the toxicology, pharmacology, and clinical utility of drug candidates is required.” (Ex. 1014, IPR ’776, FWD at 6; Ex. 1017, IPR ’780, FWD at 8; Ex. 1018, IPR ’785, FWD at 8.) The Board also previously held that “Drs. Murthy and Kahl are qualified to testify as to the knowledge of a person of ordinary skill in the art.” (Ex. 1017, IPR ’780, FWD at 11; Ex. 1018, IPR ’785, FWD at 11.)

III. The ’289 Patent Prosecution History.

The ’289 Patent describes methods and compounds useful for treating fungal infections, and more specifically, topical formulations for treatment of onychomycosis and/or cutaneous fungal infections using boron-containing small molecules. (Ex. 1001, the ’289 patent at [54] Title, [57] Abstract; Ex. 1003, Kahl Decl. ¶ 26; Ex. 1005, Murthy Decl. ¶ 22.) It specifically claims pharmaceutical formulations including tavaborole. (Ex. 1001, the ’289 patent cols. 323–24; Ex. 1005, Murthy Decl. ¶ 34.) Tavaborole has the following structure:
During the prosecution of U.S. Patent Application No. 11/357,687 (Ex. 1013, the ’687 file wrapper) which issued as U.S. Patent No. 7,582,621 (Ex. 1012, the ’621 Patent), and to which the ’290 Patent claims priority, the Examiner rejected the pending claims over Austin and the definition of “fungicide” from Answers.com. (Ex. 1013, the ’687 file wrapper at 53–55; Ex. 1003, Kahl Decl. ¶ 26; Ex. 1005, Murthy Decl. ¶ 51.) The Examiner noted that Austin discloses tavaborole for use as an industrial fungicide, and that the definition of fungicide from Answers.com taught that a fungicide can be used for agriculture or the pharmaceutical industry. (Ex. 1013, the ’687 file wrapper at 55; Ex. 1003, Kahl Decl. ¶ 26; Ex. 1005, Murthy Decl. ¶ 51.)

In response to this rejection the Patent Owner argued that a POSITA would not choose an industrial fungicide for human use because some fungicides are
dangerous to humans. (Ex. 1013, the ’687 file wrapper at 18–19; Ex. 1003, Kahl Decl. ¶ 27; Ex. 1005, Murthy Decl. ¶ 52.) The Patent Owner argued: “the art teaches that compounds that are useful for killing or inhibiting fungi may also harm animals” and “Answers.com thus does not provide a motivation to modify the teachings of Austin to use any particular oxaborole to treat an animal, and in fact teaches away from such modification.” (Ex. 1013, the ’687 file wrapper at 18–19; Ex. 1003, Kahl Decl. ¶ 27; Ex. 1005, Murthy Decl. ¶ 52.)

The Examiner relied on the Patent Owner’s argument in deciding to allow the pending claims which ultimately issued as claims 1–12 the ’621 Patent. (Ex. 1013, the ’687 file wrapper at 6–7; Ex. 1003, Kahl Decl. ¶ 28; Ex. 1005, Murthy Decl. ¶ 52.)

The Patent Owner relied on the same argument during prosecution of application Ser. No. 11/505,591 (Ex. 1016, the ’591 application), which issued as the ’657 Patent (Ex. 1015). (Ex. 1016, the ’591 application at 24–25; Ex. 1003, Kahl Decl. ¶ 29; Ex. 1005, Murthy Decl. ¶¶ 54–59.) There again, the Examiner relied on the Patent Owner’s argument in deciding to allow the pending claims. (Ex. 1016, the ’591 application at 6–7; Ex. 1003, Kahl Decl. ¶ 29; Ex. 1005, Murthy Decl. ¶¶ 58.) The Board found all claims of the ’657 Patent to be obvious and unpatentable in IPR2015-01780 and IPR2015-01785 (Ex. 1017, IPR ’780, FWD at 60; Ex. 1018, IPR ’785, FWD at 58–59; Ex. 1005, Murthy Decl. ¶ 59).
U.S. Patent App. No. 11/505,591, which became the ’657 Patent, was filed on August 16, 2006. (Ex. 1015.) The first substantive Office Action rejected the pending claims over U.S. Patent No. 5,880,188 to Austin (‘the ’188 Patent’) and Austin et al. (CAS:124:234024). (Ex. 1016, the ’591 application at 40–41.)

The Examiner rejected the pending claims in the ’591 application on the grounds that the ’188 Patent, which has substantially the same disclosure as Austin (Ex. 1007), discloses tavaborole as recited in the claims. (Ex. 1016, the ’591 application at 38–41; Ex. 1005, Murthy Decl. ¶55.) The Examiner correctly explained that “[o]ne having ordinary skill in the art would find the claims…prima facie obvious because one would be motivated to employ the compositions of Austin et al. to obtain [the] instant formulation comprising [tavaborole] and pharmaceutical acceptable excipient.” (Ex. 1016, the ’591 application at 41; Ex. 1005, Murthy Decl. ¶55.) The Examiner also correctly explained that “[t]he motivation to make the claimed compounds derived from the known compounds/compositions would possess similar activity (i.e., fungicide or treating fungal infection) to that which is claimed in the reference.” (Ex. 1016, the ’591 application at 41; Ex. 1005, Murthy Decl. ¶55.)

In response to this rejection, the Patent Owner argued that a POSITA would not choose an industrial fungicide for topical application to a human because some fungicides are dangerous to humans. (Ex. 1016, the ’591 application at 24; Ex.
1005, Murthy Decl. ¶ 56.) Specifically, the Patent Owner argued that “one of skill in the art would not presumptively consider a compound to be suitable for administration to an animal, especially a human, merely because a compound has been shown to have antifungal effects in paint or aviation fuel.” (Ex. 1016, the ’591 application at 24; Ex. 1005, Murthy Decl. ¶ 56.) The Patent Owner also repeated arguments made during prosecution of the ’621 Patent, stating “the art teaches that compounds that are useful for killing or inhibiting fungi may also harm animals, and thus teaches away from assuming that any fungicide can be used in a pharmaceutical formulation as claimed.” (Ex. 1016, the ’591 application at 25; Ex. 1005, Murthy Decl. ¶ 56.) Therefore, the Patent Owner again argued that a POSITA would be discouraged from using an industrial fungicide for the topical treatment of fungal infections in humans. (Ex. 1016, the ’591 application at 23–25; Ex. 1005, Murthy Decl. ¶ 56.)

Additionally, in response to a rejection under Section 112, paragraph 1, the Patent Owner argued that the claims were “fully enabled by the specification coupled with knowledge in the art” and that “formulations may be made based on excipients, additives and methods known in the art.” (Ex. 1016, the ’591 application at 22; Ex. 1005, Murthy Decl. ¶ 57.)
The arguments made above were in applications to which the application that issued as the ’289 patent claimed priority and thus are part of the prosecution history of the ’289 patent. (Ex. 1001; Ex. 1003, Kahl Decl. ¶ 29.)

IDENTIFICATION OF THE CHALLENGE

Pursuant to 37 C.F.R. § 42.104(b), Petitioner provides the following statement of the precise relief requested for each claim challenged. Petitioner requests institution of *inter partes* review and a final written decision that claims 1–15 of the ’289 patent are invalid and unpatentable under 35 U.S.C. § 102 and/or § 103, and cancellation of those claims. To prevail in *inter partes* review of the challenged claims, Petitioner must prove unpatentability by a preponderance of the evidence. 35 U.S.C. § 316(e); 37 C.F.R. § 42.1(d). This petition shows a reasonable likelihood that the petitioner would prevail on at least one of the claims challenged in this petition because the request shows that each limitation of at least one claim of the ’289 patent are taught in the prior art. Each reference is non-redundant and has particular unique relevance. Petitioner’s detailed statement of the reasons for the relief requested is set forth below.

I. The Claims Challenged

Pursuant to § 42.104(b)(1), Petitioner identifies the challenged claims as all claims, 1–15, of the ’289 patent. A listing of these claims is provided below:
1. A pharmaceutical formulation, comprising: 1,3-dihydro-5-fluoro-1-hydroxy-2,1-benzoxaborole, or a pharmaceutically acceptable salt thereof; and a pharmaceutically acceptable topical carrier.

2. The pharmaceutical formulation of claim 1, wherein the pharmaceutically acceptable topical carrier comprises one or more members selected from polymers, thickeners, buffers, neutralizers, chelating agents, preservatives, surfactants or emulsifiers, antioxidants, waxes or oils, emollients, sunscreens, and a solvent or mixed solvent system.

3. The pharmaceutical formulation of claim 1, wherein the pharmaceutically acceptable topical carrier comprises a solvent system and a chelating agent; wherein the solvent system comprises ethanol and propylene glycol; and wherein the chelating agent is ethylene diamine tetraacetic acid (EDTA) or a pharmaceutically acceptable salt thereof.

4. A pharmaceutical formulation, comprising: 1,3-dihydro-5-fluoro-1-hydroxy-2,1-benzoxaborole, or a pharmaceutically acceptable salt thereof; a solvent system and a chelating agent.

5. The pharmaceutical formulation of claim 4, wherein the solvent system comprises ethanol.

6. The pharmaceutical formulation of claim 4, wherein the solvent system consists of ethanol.

7. The pharmaceutical formulation of claim 4, wherein the solvent system comprises ethanol and propylene glycol.

8. The pharmaceutical formulation of claim 4, wherein the chelating agent is ethylene diamine tetraacetic acid (EDTA) or a pharmaceutically acceptable salt thereof.

9. The pharmaceutical formulation of claim 8, wherein the ethylene diamine tetraacetic acid (EDTA) or a pharmaceutically acceptable salt thereof, is present in a concentration of from about 0.005% to about 2.0% w/w.

10. The pharmaceutical formulation of claim 4, wherein the 1,3-dihydro-5-fluoro-1-hydroxy-2,1-benzoxaborole, or a pharmaceutically acceptable salt thereof, is present in a concentration of about 5% w/w.

11. The pharmaceutical formulation of claim 4, wherein the formulation is suitable for the treatment of onychomycosis of a toenail due to Trichophyton rubrum or Trichophyton mentagrophytes by topical application of the formulation to the toenail.
12. A pharmaceutical formulation, comprising: about 5% w/w 1,3-dihydro-5-fluoro-1-hydroxy-2,1-benzoxaborole, or a pharmaceutically acceptable salt thereof; propylene glycol; ethanol; and ethylene diamine tetraacetic acid (EDTA) or a pharmaceutically acceptable salt thereof.

13. The pharmaceutical formulation of claim 12, wherein the formulation is suitable for the treatment of onychomycosis of a toenail due to Trichophyton rubrum or Trichophyton mentagrophytes by topical application of the formulation to the toenail.

14. The pharmaceutical formulation of claim 12, wherein the ethylene diamine tetraacetic acid (EDTA) or a pharmaceutically acceptable salt thereof, is present in a concentration of from about 0.005% to about 2.0% w/w.

15. The pharmaceutical formulation of claim 14, wherein the formulation is suitable for the treatment of onychomycosis of a toenail due to Trichophyton rubrum or Trichophyton mentagrophytes by topical application of the formulation to the toenail.

(Ex. 1001, the ’289 patent at col. 323:1–col. 324:34.)

II. Specific Grounds And Art.

Pursuant to § 42.104(b)(2), Petitioner identifies the specific statutory grounds under 35 U.S.C. §§ 102 or 103 on which the challenge to the claim is based and the patents or printed publications relied upon for each ground as follows:

Ground I: Claims 1 & 2 of the ’289 Patent are Obvious Over *Austin* in View of *Brehove*.

Ground II: Claims 4-7 & 10-11 of the ’289 Patent are Obvious Over *Austin* in View of *Brehove* and *Samour*.

Ground IV: Claims 1 & 2 of the ’289 Patent are Obvious Over Austin in View of Freeman.

Ground V: Claims 4-7 & 10-11 of the ’289 Patent are Obvious Over Austin in View of Freeman and Samour.

III. Claim Construction

Pursuant to § 42.104(b)(3), Petitioner identifies how the challenged claims are to be construed as follows.

Claims 1–15 of the ’289 Patent recite or depend from claims reciting the tavaborole (Ex. 1001, the ’289 patent at col. 323:1–col. 324:34), which is disclosed in Austin. (Ex. 1005, Murthy Decl. ¶¶ 34–48.) Tavaborole has the following structure:

(See Ex. 1007, Austin at 24:5–14; see also Ex. 1027 at 1, 3; Ex. 1005, Murthy Decl. ¶ 98.) The ’289 Patent discloses this structure as compound 1 with a formula
of C₇H₆BFO₂ and a molecular weight of 151.93 Daltons. (Ex. 1001, the ’289 patent col. 137:51-66; Ex. 1005, Murthy Decl. ¶ 98.)

Claims 1-3 of the ’289 Patent recite or depend from claims reciting the term “pharmaceutically acceptable topical carrier.” (Ex. 1005, Murthy Decl. ¶ 99.) The term “pharmaceutically acceptable carrier” is defined in the ’289 Patent as “any formulation or carrier medium that provides the appropriate delivery of an effective amount of a [sic] active agent as defined herein, does not interfere with the effectiveness of the biological activity of the active agent, and that is sufficiently non-toxic to the host or patient.” (Id.; Ex. 1001, the ’289 patent col. 12:7–13.) The term “pharmaceutically acceptable topical carrier” is defined in the ’289 Patent as a pharmaceutically acceptable carrier that is “suitable for topical application.” (Ex. 1005, Murthy Decl. ¶ 99; Ex. 1001, the ’289 patent col. 12:23–32.)

Claims 4-7 of the ’289 Patent recite or depend from claims reciting “a solvent system.” (Ex. 1005, Murthy Decl. ¶ 100.) A “solvent system” means “a solvent or a mixture of solvents.” (Id.) This interpretation is confirmed by the claims of the ’289 Patent—claim 6 states that the solvent system “consists of ethanol” (a single solvent), while claim 7 states that the solvent system “comprises ethanol and propylene glycol” (a mixture of solvents). (Id.; Ex. 1001, the ’289 patent col. 323:24–29.)
IV. How the claims are unpatentable.

Pursuant to § 42.104(b)(4), Petitioner identifies the following as its statement of how the construed claim is unpatentable under the statutory grounds identified in part II, supra at 28, specifying where each element of the claim is found in the prior art patents or printed publications relied upon. This section also includes, as integral to the explanation of how the claims are unpatentable, petitioner’s identification pursuant to 37 C.F.R. § 42.104(b)(5) of the exhibit number of the supporting evidence relied upon to support the challenge and the relevance of the evidence to the challenge raised, including identifying specific portions of the evidence that support the challenge.

A patent claim is unpatentable under 35 U.S.C. § 103(a) if the differences between the claimed subject matter and the prior art are such that the subject matter, as a whole, would have been obvious at the time the invention was made to a person having ordinary skill in the art to which the subject matter pertains. KSR Int’l Co. v. Teleflex Inc., 550 U.S. 398, 406 (2007). The question of obviousness is resolved on the basis of underlying factual determinations, including: (1) the scope and content of the prior art; (2) any differences between the claimed subject matter and the prior art; (3) the level of skill in the art; and (4) objective evidence of nonobviousness. Graham v. John Deere Co., 383 U.S. 1, 17–18 (1966).
“[I]t can be important to identify a reason that would have prompted a person of ordinary skill in the relevant field to combine elements in the way the claimed new invention does.” KSR, 550 U.S. at 418. Moreover, a person of ordinary skill in the art must have had a reasonable expectation of success of doing so. PAR Pharm., Inc. v. TWi Pharms., Inc., 773 F.3d 1186, 1193 (Fed. Cir. 2014). Conclusive proof of efficacy is not required to show obviousness. See Hoffmann-La Roche Inc. v. Apotex Inc., 748 F.3d 1326, 1331 (Fed. Cir. 2014) (“Conclusive proof of efficacy is not necessary to show obviousness. All that is required is a reasonable expectation of success.”).

All six grounds below use as a principal reference Austin, which Petitioner submits is analogous prior art. Prior art is analogous if it either (1) “is from the same field of endeavor, regardless of the problem addressed,” or (2) “is reasonably pertinent to the particular problem with which the inventor is involved.” Unwired Planet, LLC v. Google Inc., 841 F.3d 995, 1000 (Fed. Cir. 2016) (quoting In re Clay, 966 F.2d 656, 658–59 (Fed. Cir. 1992)); In re Bigio, 381 F.3d 1320, 1325 (Fed. Cir. 2004). “A reference is reasonably pertinent if, even though it may be in a different field from that of the inventor’s endeavor, it is one which, because of the matter with which it deals, logically would have commended itself to an inventor’s attention in considering his problem.” In re ICON Health & Fitness, Inc., 496 F.3d 1374, 1380–81 (Fed. Cir. 2007); see also, Innovation Toys, LLC v. MGA Entm’t,
Inc., 637 F.3d 1314, 1321 (Fed. Cir. 2011). Austin logically would have commended itself to the problem facing the inventors of the ’289 patent. See Scientific Plastic Products, Inc. v. Biotage AB, 766 F.3d 1355 (Fed. Cir. 2014); see also ICON, 496 F.3d at 1379–80 (holding that reference may be reasonably pertinent as analogous art where the matter it deals with logically would have commended itself to the inventor’s attention). (See also Ex. 1014, IPR ’776, FWD at 12; Ex. 1017, IPR ’780, FWD at 19–22; Ex. 1018, IPR ’785, FWD at 19–22.)

 A. Explanation Of Ground 1 For Unpatentability: Claims 1 & 2 of the ’289 Patent are Obvious Over Austin in View of Brehove

It would have been obvious to a POSITA to combine the known, effective antifungal boron-containing compound disclosed in Austin with the topical application of pharmaceutical compositions including boron-containing antifungal compounds for the treatment of onychomycosis as taught by Brehove. The substitution of tavaborole for the active ingredient of Brehove is nothing more than a simple substitution of one known elements for another according to their established functions. See KSR, 550 U.S. at 401. This combination renders Claims 1 and 2 of the ’289 patent obvious.

1. **All Elements of Claims 1 & 2 are Obvious Over Austin in View of Brehove**

 a. **Independent Claim 1**

 All limitations of Claim 1 of the ’289 Patent would have been obvious over
Austin in view of Brehove. The prior art “must be read, not in isolation, but for what it fairly teaches in combination with the prior art as whole.” In re Merck & Co., 800 F.2d 1091, 1097 (Fed. Cir. 1986). As the Board has previously found, Austin and Brehove together suggest administering to a human a therapeutically effective amount of tavaborole. (See Ex. 1014, IPR ’776, FWD at 18; Ex. 1017, IPR ’780, FWD at 28.)

The pharmaceutical formulation of Claim 1 recites tavaborole or a pharmaceutically acceptable salt, which is specifically disclosed as an effective fungicide in Austin. (Ex. 1007, Austin at (57) [Abstract], 3:35–40; Ex. 1005, Murthy Decl. ¶¶ 101–03.) Brehove discloses pharmaceutical compositions containing boron-containing compounds, and specifically teaches the topical application of such compositions to the toenail of a human. (Ex. 1008, Brehove ¶¶ [0034]–[0038], Ex. 1005, Murthy Decl. ¶ 107.) It would have been obvious for a POSITA to use the tavaborole compound taught by Austin as the active fungicidal ingredient in the topically applied pharmaceutical formulation of Brehove.

The pharmaceutical formulation of Claim 1 further requires “a pharmaceutically acceptable topical carrier.” Brehove discloses its pharmaceutical compositions to include mineral oil, petroleum jelly, wax, or organic film formers to create a reservoir for the active compound, thereby allowing “extended diffusion and penetration” into the toenail and to the nail bed.
Combining the compound of *Austin* with the topical application and pharmaceutical composition of *Brehove* renders this limitation obvious.

b. **Dependent Claim 2**

Claim 2 depends from Claim 1 and further requires that the topical carrier “comprises one or more members selected from polymers, thickeners, buffers, neutralizers, chelating agents, preservatives, surfactants or emulsifiers, antioxidants, waxes or oils, emollients, sunscreens, and a solvent or mixed solvent system.” Suitable topical carriers described by *Brehove* include “white mineral oil, petroleum jelly and paraffin wax or volatile solvent[s] such as alcohol or acetone” as well as “film forming polymers.” Ex. 1008, *Brehove* ¶¶[0025]–[0026].

2. **A POSITA Would Have Had Reason to Combine *Austin* and *Brehove***

A POSITA would have had numerous reasons to combine the teachings of *Austin* and *Brehove*, i.e., use the tavaborole compound of *Austin* in a topical application for treatment of onychomycosis as taught by *Brehove*. (See Ex. 1005, Murthy Decl. ¶¶109–114.) The Board has previously held that a person of ordinary skill in the art “would have had reason to use Austin’s tavaborole in Brehove’s formulation for topical treatment of nail infections such as onychomycosis,” (Ex. 1017, IPR ’780, FWD at 28), and that “Austin and Brehove together suggest administering to a human a therapeutically effective amount of tavaborole.” (Ex. 1014, IPR ’776, FWD at 18.)
First, both Austin and Brehove teach the use of boron-containing compounds as effective fungicides. Austin specifically teaches that oxaboroles are particularly effective against microorganisms such as yeasts and fungi. (Ex. 1007, Austin at 3:35–40; Ex. 1005, Murthy Decl. ¶ 111.) Brehove teaches that organo-boron compounds have long been known to exhibit biocidal activity and teaches the use of such compounds in topical applications for the treatment of onychomycosis without skin irritation or noticeable side effects. (Ex. 1008, Brehove ¶¶ [0007], [0017]–[0018]; Ex. 1005, Murthy Decl. ¶ 111.)

Second, both Austin and Brehove teach efficacy of boron-containing compounds against onychomycosis-causing yeast, i.e., Candida albicans. (Ex. 1005, Murthy Decl. ¶ 111.) Austin discloses the high fungicidal potency of tavaborole, disclosing that an in vitro MIC of 5 ppm against numerous types of fungi, including Candida albicans. (Ex. 1007, Austin at 35–39.) Similarly, Brehove teaches its topical application of boron-containing compounds to inhibit Candida albicans among other bacteria, fungi and other pathogens that cause onychomycosis. (Ex. 1008, Brehove ¶¶ [0003], [0017]–[0018].) It was known in the art that antifungal activity against yeasts such as Candida albicans is predictive of similar efficacy against dermatophytes such as T. rubrum and T. mentagrophytes. (Ex. 1005, Murthy Decl. ¶ 162.) A POSITA would therefore be motivated to combine the effective antifungal, tavaborole, taught by Austin with
the topical composition taught by Brehove to arrive at a safe and convenient topical
application effective against all primary causes of onychomycosis: Candida albicans, T. rubrum, and T. mentagrophytes.

Third, a person would have been motivated to replace the active fungicidal
ingredient used in the topical compositions of Brehove with the tavaborole
compound taught by Austin because of tavaborole’s lower molecular weight. (Ex.
1005, Murthy Decl. ¶ 112.) While Brehove treats onychomycosis using 2,2’-(1-
methyltrimethylene dioxy) bis-(4-methyl-1,3,2-dioxaborinane) and 2,2’-oxybis (4,
4,6-trimethyl-1,3,2-dioxaborinane) as the active ingredients in its compositions,
these compounds having respective molecular weights of 285.9 and 269.9 Daltons,
the tavaborole molecule has a significantly lower molecular weight of 151.93
Daltons. (Id. at ¶¶ 112–13.) It was known in the art that smaller, lower molecular
weight molecules are more effective at penetrating the human nail barrier and
therefore have a greater likelihood of penetrating the entire nail and reaching the
underlying nail plate at lower concentrations. (Id. at ¶ 112.) Therefore, a POSITA,
aware of the fungicidal properties of boron-containing compounds in general and
tavaborole in particular, would be motivated to use tavaborole as an active
ingredient in the topical compositions of Brehove as it is a lower molecular weight
boron-containing molecule and would therefore be more effective at penetrating
the nail plate thereby leading to improved efficacy and safety of the composition at
lower concentrations of the active ingredient. (Id. at ¶¶ 109–114.)

Finally, the Board has already previously held that a POSITA would have been motivated to combine the teachings of Austin and Brehove for the treatment of onychomycosis. (Ex. 1014, IPR ’776, FWD at 18–23.) The Board stated that “the combination of the structural similarities and the similar fungicidal activity against C. albicans would have led a [POSITA] to combine Brehove’s method of treating onychomycosis using Austin’s tavaborole instead of BioBor” and that, due to tavaborole’s low molecular weight and demonstrated efficacy against C. albicans, tavaborole was Austin’s “first and best compound to select for treatment of onychomycosis.” (Id. at 21–22; see also Ex. 1017, IPR ’780, FWD at 28, 37–38.)

Thus, a POSITA would have had ample reason to combine the tavaborole compound of Austin with the topical method of treating onychomycosis taught by Brehove.

3. A POSITA Would Have Had a Reasonable Expectation of Success in Combining Austin and Brehove

A POSITA would have had a reasonable expectation of success in using the tavaborole compound of Austin in the method of treating onychomycosis through topical application of a composition including an organo-boron compound as taught by Brehove for the following reasons: 1) boron-containing compounds were well known in the art as effective biocides and the boron-containing compounds of
Brehove and Austin share common structural features, indicating similar fungicidal activity; 2) the preferred tavaborole compound of Austin is taught to have similar fungicidal activity with the active ingredient compounds used in the method of Brehove; 3) the tavaborole compound of Austin has a lower molecular weight than the active ingredient compounds used in the method of Brehove; 4) Brehove demonstrates that an industrial boron-based biocide such as the tavaborole compound of Austin can be incorporated as an active ingredient in a safe and effective topical application for treatment of onychomycosis. (Ex. 1005, Murthy Decl. ¶¶ 115–125; see also Ex. 1014, IPR ’776, FWD at 28; Ex. 1017, IPR ’780, FWD at 37–38.)

A POSITA was aware that boron-based compounds are effective fungicides. Brehove teaches that “organo-boron compounds have long been known to exhibit biocidal activity.” (Ex. 1008, Brehove ¶ [0007].) The specific boron-based compounds applied as the active fungicidal ingredient in the method of Brehove are boron heterocycles, as is the tavaborole compound disclosed as one of three preferred antifungal compounds of Austin. (Ex. 1007, Austin at (57) [Abstract]; Ex. 1005, Murthy Decl. ¶¶ 117–119.) Due to this structural similarity, a POSITA would have an expectation that the tavaborole compound would exhibit similar antifungal activity and would be an effective active ingredient for use in the method of treatment of Brehove. (Ex. 1005, Murthy Decl. ¶ 118.)
In addition to structural similarity, *Brehove* and *Austin* disclose similar fungicidal activity in their respective compounds. *Austin* teaches the tavaborole as one of three preferred compounds. (Ex. 1007, *Austin* at (57) [Abstract], col. 6:5–10.) *Austin* teaches MICs as low as 5 ppm of tavaborole against *Candida albicans* as well as numerous other fungi in vitro. (Id. at 35–39.) *Brehove* similarly teaches effectiveness of its preferred boron-containing compounds at killing *Candida albicans* at concentrations of 0.1% by weight. (Ex. 1008, *Brehove* ¶¶[0032]–[0033].) In addition it was known to a POSITA that antifungal activity against yeasts such as *Candida albicans* is a predictor of similar activity against dermatophytes such as *T. rubrum* and *T. mentagrophytes*. (Ex. 1005, Murthy Decl. ¶ 162; Ex. 1014, IPR ’776, FWD at 30-31.) Therefore, as the Board has previously held, a POSITA would have had a reasonable expectation that tavaborole, which shares fungicidal activity with the compounds of *Brehove*, would share other functional activity, including suitability for incorporation as an active ingredient into a safe and effective formulation for topical treatment of the primary onychomycosis-causing pathogens. (Ex. 1014, IPR ’776, FWD at 30-31; Ex. 1017, IPR ’780, FWD at 37.)

A POSITA would further have a reasonable expectation of success in using tavaborole as the active ingredient in the method disclosed by *Brehove* due to tavaborole’s low molecular weight. (See Ex. 1014, IPR ’776, FWD at 24.) While
Brehove treats onychomycosis using 2,2’-(1-methyltrimethylene dioxy) bis-(4-methyl-1,3,2-dioxaborinane) and 2,2’-oxybis (4,4,6-trimethyl-1,3,2-dioxaborinane) as the active ingredients in its compositions, these compounds having respective molecular weights of 285.9 and 269.9 Daltons, the tavaborole molecule has a significantly lower molecular weight of 151.93 Daltons. (Ex. 1005, Murthy Decl. at ¶113.) Therefore, a POSITA would have a reasonable expectation that the tavaborole molecule of Austin would be an effective active ingredient in a topical application for the treatment of onychomycosis as taught by Brehove as it would allow the active ingredient of the composition to effectively penetrate the nail plate. (Id. at ¶112.) Indeed, the Board has previously held that a POSITA “would have had a reasonable expectation that administering tavaborole topically would penetrate the nail.” (Ex. 1014, IPR ’776, FWD at 24; Ex. 1017, IPR ’780, FWD at 30-31.)

Finally, a POSITA would not be discouraged from applying a fungicide initially used for industrial applications as an active ingredient in a topically applied pharmaceutical composition. The concentration of an active ingredient in such a composition is readily adjustable for topical application to humans based on routine experimentation. (Ex. 1005, Murthy Decl. ¶116.) The level of skill of a POSITA was high and a POSITA would have had a reasonable expectation of successfully determining via well-known techniques a therapeutically effective
amount of tavaborole for use in a topical application for treatment of onychomycosis. (Id. at ¶¶ 117–118.) Further, there are multiple examples of industrial biocides being applied for use in topical pharmaceutical formulations. For example, the boron-containing active ingredient compounds of Brehove were themselves used in an industrial biocide, BioborJF®, before being applied in Brehove’s pharmaceutical compositions. (Id. at ¶¶ 70–72.) Another such example is amorolfine hydrochloride, used in the topically applied LOCERYL®, which was previously used for agricultural applications. (Id. at ¶ 124.) Thus, a POSITA would have a reasonable expectation of success of replacing the boron-containing active ingredients of Freeman with tavaborole, despite its use as an industrial fungicide. Indeed, the Board has previously held that a POSITA “would have recognized that industrial fungicides may have therapeutic uses, including in some cases, topically treating a human for C. albicans.” (Ex. 1014, IPR ’776, FWD at 13.)

Thus, as the Board has previously found, a POSITA would have had a reasonable expectation of success of using the preferred tavaborole compound of Austin as the active fungicidal compound in the method of topical application of a pharmaceutical composition for the treatment of onychomycosis as taught by Brehove. (Ex. 1014, IPR ’776, FWD at 23 (holding that that a POSITA “would have had a reasonable expectation of success in combining Austin and Brehove”); Ex. 1017, IPR ’780, FWD at 30 (same).)
B. Explanation Of Ground 2 For Unpatentability: Claims 4–7 & 10–11 of the ’289 Patent are Obvious Over Austin in View of Brehove and Samour

It would have been obvious to a POSITA to combine the topical application of a boron-containing compound for treatment of onychomycosis as taught by Brehove with the specific antifungal active ingredient of tavaborole taught by Austin in further combination with the effective and durable nail lacquer formulation for topical treatment of onychomycosis taught by Samour. The substitution of the active ingredient of Samour with a boron-based compound for use in a topical application for treatment of onychomycosis as generally taught by Brehove, and for tavaborole as specifically taught by Austin, is nothing more than a simple substitution of known elements for one another according to their established functions. See KSR., 550 U.S. at 401. This combination renders claims 4–7 & 10–11 of the ’289 Patent obvious.

1. All Elements of Claims 4–7 & 10–11 are Obvious Over Austin in View of Brehove and Samour

 a. Independent Claim 4

 All limitations of Claim 4 of the ’289 Patent would have been obvious over Austin in view of Brehove and Samour. The pharmaceutical formulation of Claim 4 requires tavaborole. As explained above with respect to claim 1, it would have been obvious for a POSITA to use the tavaborole compound taught by Austin as the active fungicidal ingredient in the topically applied pharmaceutical formulation of
The pharmaceutical formulation of Claim 4 further requires “a solvent system” *Brehove* discloses that its topical formulations may include various topical carriers that “serve as a reservoir for the active ingredient.” (Ex. 1008, *Brehove* ¶¶ [0025]–[0026].) Suitable topical carriers described by *Brehove* include “volatile solvent[s] such as alcohol or acetone.” (*Id.* at ¶[0025].)

The pharmaceutical formulation of Claim 4 further requires “a chelating agent.” *Samour* discloses a nail lacquer effective for treating onychomycosis in humans, and discloses that its topical formulations may include chelating agents. (Ex. 1010, *Samour* col.10:57–65.) It therefore would have been obvious to formulate the tavaborole of *Austin* in a pharmaceutical composition comprising a solvent system as described in *Brehove* and a chelating agent as described in *Samour*.

b. **Dependent Claims 5–7 and 10–11**

Claim 5 depends from Claim 4 and further requires that “the solvent system comprises ethanol.” Claim 6 requires that “the solvent system consists of ethanol.” *Austin* describes “suitable water-miscible organic solvents” including “alcohols such as ethanol.” (Ex. 1007, *Austin* at 8:34–38.) *Samour* identifies a number of “physiologically safe organic solvents,” including ethanol and especially anhydrous ethanol (EtOH). (Ex. 1010, *Samour* col. 9:31–49.) It therefore
would have been obvious for a POSITA to have included a solvent system comprising or consisting of ethanol.

Claim 7 depends from claim 4 and requires that “the solvent system comprises ethanol and propylene glycol.” Austin describes “suitable water-miscible organic solvents” including “alcohols such as ethanol or glycols such as . . . propylene glycol.” (Ex. 1007, Austin at 8:34–38.) Further, Samour provides numerous examples of lacquer formulations including both ethanol and propylene glycol. (See, e.g., Ex. 1010, Samour 21:41–22:18 (Examples 6, 8, and 9).) It therefore would have been obvious for a POSITA to have included a solvent system comprising ethanol and propylene glycol.

Claim 10 depends from claim 4 and requires that tavaborole, “or a pharmaceutically acceptable salt thereof, is present in a concentration of about 5% w/w.” Austin teaches a preferred concentration of tavaborole of “especially from 5 to 30% . . . by weight relative to the total weight of the biocide composition.” (Ex. 1007, Austin at 9:5–9.) Brehove teaches that its active organo-boron compound “[m]ost preferably . . . constitutes between about 0.1 wt % and 25 wt % of the composition.” (Ex. 1008, Brehove ¶[0028].) Further, Samour specifically teaches a topically applied pharmaceutical composition with 5% w/w active antifungal ingredient. (Ex. 1010, Samour col. 22:20–24:23 (Example 7 & 8 disclosing numerous pharmaceutical compositions with 5% by weight econazole).)
It would therefore have been obvious to a POSITA to include tavaborole as an active ingredient in the pharmaceutical composition at a concentration of 5% as this value is within the range of preferred concentrations of active ingredient disclosed by each of Austin, Brehove, and Samour.

Claim 11 depends from claim 4 and requires that “the formulation is suitable for the treatment of onychomycosis of a toenail due to \textit{Trichophyton rubrum} or \textit{Trichophyton mentagrophytes} by topical application of the formulation to the toenail.” Both Austin and Brehove teach efficacy of boron-containing compounds against onychomycosis-causing yeast, i.e., \textit{Candida albicans}. It was known in the art that antifungal activity against yeasts such as \textit{Candida albicans} is predictive of similar efficacy against dermatophytes such as \textit{T. rubrum} and \textit{T. mentagrophytes}. (Ex. 1005, Murthy Decl. ¶ 162.) A POSITA would therefore be motivated to combine the effective antifungal, tavaborole, taught by Austin with the topical compositions taught by Brehove and Samour to arrive at a safe and convenient topical application effective against all primary causes of onychomycosis: \textit{Candida albicans}, \textit{T. rubrum}, and \textit{T. mentagrophytes}. (See Ex. 1005, Murthy Decl. ¶¶ 141–144.)

2. A POSITA Would Have Had Reason to Combine Austin, Brehove, and Samour and Would Have had a Reasonable Expectation of Success in Combining the Same

A POSITA would have had reason to combine and would have had a
reasonable expectation of success in combining *Austin, Brehove,* and *Samour* for all the reasons discussed above for *Austin* and *Brehove.* Specifically, a POSITA would have been motivated to combine the compound of *Austin,* a small, boron-based compound known for its efficacy against *Candida albicans,* in view of *Brehove’s* proven safe and effective topical application of an industrial boron-based compound for treatment of onychomycosis, with *Samour’s* improved nail lacquer formulation, which was shown to have improved physical properties (e.g., durability, water-resistance, flexibility) as well as improved diffusion characteristics for active agents, for effective topical treatment of onychomycosis. (Ex. 1005, Murthy Decl. ¶ 143.)

Further, formulating pharmaceutical compositions, and the amount of active ingredient therein, was well known in the art of topical pharmaceuticals and involves nothing more than routine experimentation based on well-known protocols. (*Id.* at ¶ 142.)

A POSITA would be motivated to use tavaborole as the active ingredient in the topical pharmaceutical composition of *Samour* due to its low molecular weight of 151.93 Daltons. (Ex. 1001, the ’289 patent col. 135:1–66.) The preferred antifungal of *Samour,* econazole, has a molecular weight of 381.68 Daltons. (Ex. 1005, Murthy Decl. ¶ 144.) A POSITA would therefore be motivated to use the lower molecular weight tavaborole as the active ingredient of the topical
compositions taught by Samour, as a POSITA understood that lower molecular weight fungicidal compounds are more effective at penetrating the nail plate and delivering the active ingredient to the pathogen-infected area. (Id.) This lower molecular weight would also give a POSITA a reasonable expectation of success that such compositions including tavaborole would effectively treat onychomycosis. (Id. at ¶ 146.)

Thus, as the Board has previously held, a POSITA would have had a motivation to combine Austin, Brehove, and Samour and would have had a reasonable expectation of success in doing so. (Ex. 1017, IPR ’780, FWD at 43–44.)

It would have been obvious to a POSITA to combine the disclosures in Austin, Brehove, Samour and the Excipients Handbook for all the reasons discussed above as for the combination of Austin and Brehove and the combination of Austin, Brehove and Samour. Samour itself teaches that formulation may include a chelating agent as a conventional additive customarily present in medicinal nail formulations, and EDTA is a well-known and widely available, effective chelating agent. The use of EDTA as a chelating agent is thus nothing more than a simple substitution of known elements for one another according to their established
functions. See KSR, 550 U.S. at 401. This combination renders Claims 3, 8–9 & 12–15 of the ’289 Patent obvious.

1. All Elements of Claims 3, 8–9 & 12–15 of the ’289 Patent are Obvious Over Austin in View of Brehove, Samour, and the Excipients Handbook

a. Dependent Claims 3, 8, and 9

Claim 3 depends from claim 1 and requires that the topical carrier comprises “a solvent system and a chelating agent; wherein the solvent system comprises ethanol and propylene glycol” As discussed above with respect to claim 7, Austin lists ethanol and propylene glycol as examples of suitable organic solvents, and Samour provides numerous examples of lacquer formulations including both ethanol and propylene glycol. (See, e.g., Ex. 1007, Austin at 8:34–38; Ex. 1010, Samour col. 21:41–22:18.)

Claim 3 further requires that the chelating agent comprises EDTA or a pharmaceutically acceptable salt thereof. As discussed above with respect to claim 4, Samour discloses that its topical formulations may include chelating agents (Ex. 1010, Samour col. 10:57–65), and the Excipients Handbook discloses that EDTA and its salts were well known to a POSITA as chelating agents. (Ex. 1011 at 3; Ex. 1005, Murthy Decl. ¶ 182.)

Claim 8 depends from claim 4, and requires that the chelating agent comprises EDTA or a pharmaceutically acceptable salt thereof. As explained above
with respect to claim 3, the use of EDTA as a chelating agent would have been obvious in view of *Samour* and the *Excipients Handbook*.

Claim 9 depends from claim 8, and requires that the EDTA or salt thereof is present in a concentration of from about 0.005% to about 2.0% w/w. The *Excipients Handbook* provides that EDTA is usually employed in concentrations in the range 0.005–0.1% w/v. A POSITA would understand that this value falls within and substantially overlaps with the claimed range. (Ex. 1005, Murthy Decl. ¶ 180.)

b. **Independent Claim 12**

All limitations of Claim 12 of the ’289 Patent would have been obvious over *Austin* in view of *Brehove, Samour*, and *Excipients Handbook*. The pharmaceutical formulation of Claim 12 requires “about 5% w/w [tavaborole] or a pharmaceutically acceptable salt thereof” As explained above with respect to claim 1, it would have been obvious for a POSITA to use the tavaborole compound taught by *Austin* as the active fungicidal ingredient in the topically applied pharmaceutical formulation of *Brehove*. Further, as explained above with respect to claim 10, it would have been obvious to a POSITA to include tavaborole as an active ingredient in the pharmaceutical composition at a concentration of 5%, as this value is within the range of preferred concentrations of active ingredient disclosed by both *Austin* and *Brehove*. (Ex. 1007, *Austin* at 9:5–9; Ex. 1008, *Brehove* ¶[0028].) Further, *Samour* specifically teaches a topically applied
pharmaceutical composition with 5% w/w active antifungal ingredient. (Ex. 1010, *Samour* col. 22:20–24:23.)

The pharmaceutical formulation of Claim 12 further requires “**propylene glycol**” and “**ethanol.**” As discussed above with respect to claim 7, *Austin* lists ethanol and propylene glycol as examples of suitable organic solvents, and *Samour* provides numerous examples of lacquer formulations including both ethanol and propylene glycol. (*See, e.g.*, Ex. 1007, *Austin* at 8:34–38; Ex. 1010, *Samour* col. 21:41–22:18.)

The pharmaceutical formulation of Claim 12 further requires **ethylene diamine tetraacetic acid (EDTA) or a pharmaceutically acceptable salt thereof.**” As discussed above with respect to claim 8, *Samour* discloses that its topical formulations may include chelating agents (Ex. 1010, *Samour* 10:57–65), and the *Excipients Handbook* discloses that EDTA and its salts were well known to a POSITA as chelating agents. (Ex. 1011 at 3; Ex. 1005, Murthy Decl. ¶ 196.)

Combining the compound of *Austin* with the topical application and pharmaceutical compositions of *Brehove* and *Samour* in view of the *Excipients Handbook* thus renders obvious each limitation of Claim 12.

b. Dependent Claims 13–15

Claim 14 depends from claim 12 and requires that the EDTA is present in a concentration of from about 0.005% to about 2.0% w/w. The *Excipients Handbook*
provides that EDTA is usually employed in concentrations in the range 0.005–0.1% w/v. A POSITA would understand that this value falls within and substantially overlaps with the claimed range. (Ex. 1005, Murthy Decl. ¶ 206.)

Claims 13 and 15 each require that the formulation is suitable for the treatment of onychomycosis of a toenail due to *Trichophyton rubrum* or *Trichophyton mentagrophytes* by topical application of the formulation to the toenail. As explained above with respect to claim 1, *Austin* and *Brehove* teach efficacy of boron-containing compounds against onychomycosis-causing yeast, i.e., *Candida albicans*, and it was known in the art that antifungal activity against yeasts such as *Candida albicans* is predictive of similar efficacy against dermatophytes such as *T. rubrum* and *T. mentagrophytes*. (Ex. 1005, Murthy Decl. ¶ 162.)

2. A POSITA Would Have Had Reason to Combine *Austin*, *Brehove*, *Samour*, and the *Excipients Handbook* and Would Have had a Reasonable Expectation of Success in Combining the Same

A POSITA would have had reason to combine and would have had a reasonable expectation of success in combining the disclosures in *Austin*, *Brehove*, *Samour* and the *Excipients Handbook* for all the reasons discussed above as for the combination of *Austin* and *Brehove* and the combination of *Austin*, *Brehove* and *Samour*. A POSITA would have a reasonable expectation of success for such a combination because *Samour* teaches the use of a chelating agent as a conventional
additive customarily present in medicinal topical formulations (Ex. 1010, *Samour* col. 10:57–65), and because EDTA is a well-known and widely available, effective chelating agent. (Ex. 1005, Murthy Decl. ¶ 184.)

D. Explanation Of Ground 4 For Unpatentability: Claims 1 & 2 of the ’289 Patent are Obvious Over *Austin* in View of *Freeman*

It would have been obvious to a POSITA to combine the known, effective antifungal boron-containing compound disclosed in *Austin* with the topical application of pharmaceutical compositions including boron-containing antifungal compounds for the treatment of onychomycosis as taught by *Freeman*. The substitution of tavaboroloe for the active ingredient of *Freeman* is nothing more than a simple substitution of one known elements for another according to their established functions. See *KSR*, 550 U.S. at 401. This combination renders Claims 1 and 2 of the ’289 Patent obvious.

1. **All Elements of Claims 1 & 2 are Obvious Over *Austin* in View of *Freeman***

 a. **Independent Claim 1**

 All limitations of Claim 1 of the ’289 Patent would have been obvious over *Austin* in view of *Freeman*. The pharmaceutical formulation of Claim 1 requires tavaboroloe, which is specifically disclosed as an effective fungicide in *Austin*. *Freeman* discloses pharmaceutical compositions containing boron-containing compounds, and specifically teaches the topical application of such compositions
to the human finger or toenails. It would have been obvious for a POSITA to use the tavaborole compound taught by Austin as the active fungicidal ingredient in the topically applied pharmaceutical formulation of Freeman.

The pharmaceutical formulation of Claim 1 further requires “a pharmaceutically acceptable topical carrier.” Freeman discloses that its active compounds can be “employed in admixtures with conventional excipients, e.g., pharmaceutically acceptable carrier substances suitable for topical application.” (Ex. 1009, Freeman ¶ [0037].) Combining the compound of Austin with the topical application and pharmaceutical composition of Freeman renders this limitation obvious.

b. Dependent Claim 2

Claim 2 depends from Claim 1 and further requires that the topical carrier “comprises one or more members selected from polymers, thickeners, buffers, neutralizers, chelating agents, preservatives, surfactants or emulsifiers, antioxidants, waxes or oils, emollients, sunscreens, and a solvent or mixed solvent system.” Freeman teaches that its pharmaceutical preparations can “be mixed with auxiliary agents, e.g., lubricants, preservatives, stabilizers, wetting agents, emulsifiers, salts for influencing osmotic pressure, buffers, coloring, and/or one or more other active compounds, for example, other antifungal agents, etc.”
The compounds may also be formulated in “biodegradable polymeric formulations.” (Id. at ¶[0048].)

2. A POSITA Would Have Had Reason to Combine Austin and Freeman

A POSITA would have had numerous reasons to combine the teachings of Austin and Freeman, i.e., use the tavaborole compound of Austin in a topical application for treatment of onychomycosis as taught by Freeman. (Ex. 1005, Murthy Decl. ¶¶ 221–27.)

First, both Austin and Freeman teach the use of boron-containing compounds as effective fungicides. (Ex. 1005, Murthy Decl. ¶ 224.) Austin specifically teaches that oxaboroles are particularly effective against microorganisms such as yeasts and fungi. (Ex. 1007, Austin at 3:35–40.) Freeman discloses the topical application of pharmaceutical compositions including boron-containing PBA and its derivatives for the treatment of onychomycosis. (Ex. 1009, Freeman ¶¶ [008], [0030]–[0037].) The tavaborole of Austin is structurally similar to the PBA active ingredient of Freeman and a POSITA would therefore expect tavaborole to exhibit similar fungicidal activity when used in the pharmaceutical formulations disclosed by Freeman. (Ex. 1005, Murthy Decl. ¶¶ 222, 225; see also Ex. 1014, IPR ’776, FWD at 40; Ex. 1018, IPR ’785, FWD at 31, 35.)

Second, both Austin and Freeman teach efficacy of boron-containing compounds against onychomycosis-causing yeast, i.e., Candida species, or T.
Rubrum. (Ex. 1005, Murthy Decl. ¶ 224–25.) Austin discloses the high fungicidal potency of tavaborole, disclosing that an in vitro MIC of 5 ppm against numerous types of fungi, including Candida albicans. (Ex. 1007, Austin at 35–39.) Similarly, Freeman teaches its topical application of boron-containing compounds to inhibit Candida species as well as T. rubrum. (Ex. 1009, Freeman ¶¶ [0030]–[0037].) It was known in the art that antifungal activity against yeasts such as Candida albicans is predictive of similar efficacy against dermatophytes such as T. rubrum and T. mentagrophytes. (Ex. 1005, Murthy Decl. ¶ 275; see also Ex. 1014, IPR ’776, FWD at 30-31.) A POSITA would therefore be motivated to combine the effective antifungal, tavaborole, taught by Austin with the topical application of a boron-containing compound taught by Freeman to arrive at a topical application effective against all primary causes of onychomycosis: Candida albicans, T. rubrum, and T. mentagrophytes.

Third, a person would have been motivated to replace the active fungicidal ingredient used in the topical compositions of Freeman with the tavaborole compound taught by Austin because of tavaborole’s low molecular weight. (Ex. 1005, Murthy Decl. ¶ 226.) Freeman treats onychomycosis using PBA and pentafluoro PBA as the active ingredients in its compositions, these compounds having respective molecular weights of 121.9 and 211.89 Daltons, and the tavaborole molecule has a similar molecular weight of 151.93 Daltons. (Ex. 1005,
Murthy Decl. ¶¶ 226–27.) It was known in the art that smaller, lower molecular weight molecules are more effective at penetrating the human nail barrier and therefore have a greater likelihood of penetrating the entire nail and reaching the underlying nail plate at lower concentrations. (Ex. 1005, Murthy Decl. ¶ 226.) Therefore, a POSITA, aware of the fungicidal properties of boron-containing compounds in general, and tavaborole in particular, would be motivated to use tavaborole as an active ingredient in the topical compositions of Freeman as it is a low molecular weight boron-containing molecule and would therefore be effective at penetrating the nail plate thereby leading to improved efficacy and safety of the composition at low concentrations of the active ingredient. (Ex. 1005, Murthy Decl. ¶¶ 226–27.).

Finally, the Board has already previously held that a POSITA would have been motivated to combine the teachings of Austin and Freeman for the treatment of onychomycosis. (Ex. 1014, IPR ’776, FWD at 38–41.) The Board stated that a POSITA “would have had a reason to modify Freeman to administer Austin’s tavaborole instead of PBA in light of the similar chemical structure and the similar activity against Candida species.” (Id. at 40; see also Ex. 1018, IPR ’785, FWD at 26, 35.)

Thus, a POSITA would have had ample reason to combine the tavaborole compound of Austin with the topical method of treating onychomycosis taught by
3. A POSITA Would Have Had a Reasonable Expectation of Success in Combining *Austin* and *Freeman*

A POSITA would have had a reasonable expectation of success in using the tavaborole compound of *Austin* in the method of treating onychomycosis through topical application of a composition including an organo-boron compound as taught by *Freeman* for the following reasons: 1) boron-containing compounds were well known in the art as effective biocides and the boron-containing compounds of *Freeman* and *Austin* share common structural features, indicating similar fungicidal activity; 2) the preferred tavaborole compound of *Austin* is taught to have similar fungicidal activity with the active ingredient compounds used in the method of *Freeman*; and 3) the tavaborole compound of *Austin* has similar molecular weight as the active ingredient compounds used in the method of *Freeman*. (Ex. 1005, Murthy Decl. ¶¶ 228–38.)

A POSITA was aware that boron-based compounds are effective fungicides. *Freeman* teaches that “phenyl boronic acid and derivatives thereof as well as related boronic acid compounds have fungicidal properties.” (Ex. 1009, *Freeman* ¶ [0022].) The specific boron-based compounds applied as the active fungicidal ingredient in the method of *Freeman* are cyclic boron compounds, as is the tavaborole compound disclosed as one of three preferred antifungal compounds of *Austin*. (Ex. 1007, *Austin* at (57) [Abstract]; Ex. 1005, Murthy Decl. ¶¶ 229–32.)
Due to this structural similarity, a POSITA would have an expectation that the tavaborole compound would exhibit similar antifungal activity and would be an effective active ingredient for use in the method of treatment of Freeman. (Ex. 1005, Murthy Decl. ¶¶ 229–32.)

In addition to structural similarity, Freeman and Austin disclose similar fungicidal activity in their respective compounds. Austin teaches the tavaborole as one of three preferred compounds. (Ex. 1007, Austin at (57) [Abstract]; id. at 8:5–10.) Austin teaches MICs as low as 5 ppm of tavaborole against Candida albicans as well as numerous other fungi in vitro. (Id. at 35–39.) Freeman similarly teaches effectiveness of its preferred boron-containing compounds at killing Candida species yeasts as well as T. rubrum and various other fungi in vitro. (Ex. 1009, Freeman ¶¶ [0031]–[0037].) In addition it was known to a POSITA that antifungal activity against yeasts such as Candida albicans is a predictor of similar activity against dermatophytes such as T. rubrum and T. mentagrophytes. (Ex. 1005, Murthy Decl. ¶ 275.). Therefore, a POSITA would have had a reasonable expectation that tavaborole, which shares fungicidal activity with the compounds of Freeman, would share other functional activity, including suitability for incorporation as an active ingredient into an effective formulation for topical treatment of the primary onychomycosis-causing pathogens. (Ex. 1005, Murthy Decl. ¶ 232.)
A POSITA would further have a reasonable expectation of success in using tavaborole as the active ingredient in the method disclosed by *Freeman* due to tavaborole’s low molecular weight. *Freeman* treats onychomycosis using PBA and pentafluoro PBA as the active ingredients in its compositions, these compounds having respective molecular weights of 121.9 and 211.89 Daltons, and the tavaborole molecule has a similar molecular weight of 151.93 Daltons. (Ex. 1005, Murthy Decl. ¶¶ 233–34.) Therefore, a POSITA would have a reasonable expectation that the tavaborole molecule of *Austin* would be an effective active ingredient in a topical application for the treatment of onychomycosis as taught by *Freeman* as it would allow the active ingredient of the composition to effectively penetrate the nail plate. (Ex. 1005, Murthy Decl. ¶¶ 233–34.) Indeed, the Board has previously held that a POSITA “would have had a reasonable expectation that administering tavaborole topically would penetrate the nail.” (Ex. 1014, IPR ’776, FWD at 24; Ex. 1017, IPR ’780, FWD at 30-31.)

Thus, as the Board has previously found, a POSITA would have had a reasonable expectation of success of using the preferred tavaborole compound of *Austin* as the active fungicidal compound in the method of topical application of a pharmaceutical composition for the treatment of onychomycosis as taught by *Freeman*. (Ex. 1014, IPR ’776, FWD 38–41 (stating that a POSITA “would have had a reason to combine Austin and Freeman with a reasonable expectation of
success.”); see also Ex. 1018, IPR ’785, FWD at 26, 35.)

E. Explanation Of Ground 5 For Unpatentability: Claims 4–7 & 10–11 of the ’289 Patent are Obvious Over Austin in View of Freeman and Samour

The reasons for and results of combining Samour with Austin in view of Freeman are substantially the same as the reasons for combining it with Austin in view of Brehove set forth in Ground II and discussed in subheading B, at 41–46, supra. The analysis of Austin and of Samour in that discussion fully applies here, and is incorporated by reference as part of the basis for this Ground.

With regard to the “solvent system” language of Claim 4, Freeman fully substitutes for Brehove, supra, because it discloses that the active compound may be formulated in a pharmaceutically acceptable vehicle comprising “a powder, lotion, gel, spray, stick, cream, ointment, liquid, emulsion, foam or aerosol. The active PBA compound can be incorporated into a liquid in dissolved form or colloidal form. The liquid can be a solvent, partial solvent, or non-solvent. Since the active PBA compounds are water-soluble, water is a preferred solvent.” (Ex. 1009, Freeman ¶[0065].)

With regard to the concentration recited in Claim 10, Freeman fully substitutes for Brehove, supra, because Freeman teaches that its active compound “will be present in the overall formulation in amounts ranging from about 0.1% to about 100% by weight,” and that “ranges from about 2% to about 50% are most
preferred.” (Ex. 1009, Freeman ¶ [0064].)

The remaining analysis, applying Austin and Samour to the rest of the limitations of Claims 4–7 & 10–11 is substantially the same to the analysis above for those same claims and references, as is the analysis of the motivation to combine and likelihood of success.

Thus, as the Board has previously held, a POSITA would have had a motivation to combine Austin, Freeman, and Samour and would have had a reasonable expectation of success in doing so. (Ex. 1018, IPR ’785, FWD at 41–43 (stating that a POSITA “would have been motivated to substitute tavaborole for the higher molecular weight compound in Samour… and would have a reasonable expectation of success in doing so.”).)

F. **Explanation Of Ground 6 For Unpatentability: Claims 3, 8–9 & 12–15 of the ’289 Patent are Obvious Over Austin in View of Freeman, Samour, and the Excipients Handbook**

The reasons for and results of combining the Excipients Handbook with Austin in view of Freeman and Samour are substantially the same as the reasons for combining it with Austin in view of Brehove and Samour set forth in Ground III and discussed supra, subheading C, at 46–51. The analysis of Austin, Samour, and the Excipients Handbook in that discussion fully applies here, and is incorporated by reference as part of the basis for this Ground.

The analysis, applying the Excipients Handbook to the rest of the limitations
of Claims 3, 8–9, and 12–15 is substantially the same to the analysis above for those same claims and references, as is the analysis of the motivation to combine and likelihood of success. Claims 3, 8–9, and 12–15 would therefore have been obvious over Austin in view of Freeman, Samour, and the Excipients Handbook.

G. No Secondary Considerations Overcome This Strong Showing of Obviousness.

Factual inquiries for an obviousness determination include secondary considerations based on evaluation and crediting of objective evidence of nonobviousness. *Graham*, 383 U.S. at 17–18. The totality of the evidence submitted, including objective evidence of nonobviousness, may lead to a conclusion that the challenged claims would not have been obvious to one of ordinary skill in the art. *In re Piasecki*, 745 F.2d 1468, 1471–72 (Fed. Cir. 1984). However, “secondary considerations of nonobviousness . . . simply cannot overcome a strong prima facie case of obviousness.” *Wyers v. Master Lock Co.*, 616 F.3d 1231, 1246 (Fed. Cir. 2010); *Ryko Mfg. Co. v. Nu–Star, Inc.*, 950 F.2d 714, 719 (Fed. Cir. 1991) (the weight of secondary considerations may be of insufficient weight to override a determination of obviousness based on primary considerations); *Newell Cos., Inc. v. Kenney Mfg. Co.*, 864 F.2d 757, 768 (Fed. Cir. 1988) (secondary considerations “must be considered, [but] they do not control the obviousness conclusion” (citations omitted)).

For example, Patent Owner cannot show any unexpected results over the
closest prior art. See Kao Corp. v. Unilever United States, Inc., 441 F.3d 963, 970 (Fed. Cir. 2006) (“[w]hen unexpected results are used as evidence of nonobviousness, the results must be shown to be unexpected compared with the closest prior art.”) (quoting In re Baxter Travenol Labs., 952 F.2d 388, 392 (Fed. Cir. 1991)). Nor can Patent Owner identify any long felt need in comparison to other already available treatments, with evidence showing that the need was a persistent one was recognized by those of ordinary skill in the art. See In re Gershon, 372 F.2d 535, 539 (CCPA 1967). Petitioner reserves the right to offer evidence to rebut any alleged secondary considerations Patent Owner seeks to assert.

CONCLUSION

For the foregoing reasons, Petitioner submits that there is a reasonable likelihood that it will prevail with respect to at least one of the claims challenged as unpatentable over the prior art cited herein. Accordingly, Petitioner respectfully requests inter partes review of claims 1–15 of the ’289 patent.

Respectfully submitted,

November 21, 2017

/Philip D. Segrest, Jr./
Philip D. Segrest Jr. (Reg. No. 39,021)
philip.segrest@huschblackwell.com
Lead Counsel for Petitioner
Eric J. Rakestraw (Reg. No. 68,740)
Eric.Rakestraw@HuschBlackwell.com
PTAB-ERakestraw@HuschBlackwell.com
Backup Counsel for Petitioner
HUSCH BLACKWELL LLP
120 South Riverside Plaza, Suite 2200
Chicago, IL 60606
Tel. 312-655-1500
Fax. 312-644-1501
CERTIFICATION OF WORD COUNT

Pursuant to 37 C.F.R. § 42.24(d), the undersigned hereby certifies that the word count for the Petition for Inter Partes Review of U.S. Patent No. 9,566,289 filed in this proceeding on November 21, 2017, totals 12,700 words, which is less than the 14,000 allowed under 37 C.F.R. § 42.24(a)(i).

/Philip D. Segrest, Jr./
Philip D. Segrest Jr. (Reg. No. 39,021)
philip.segrest@huschblackwell.com
Lead Counsel for Petitioner

Eric J. Rakestraw (Reg. No. 68,740)
Eric.Rakestraw@HuschBlackwell.com
PTAB-ERakestraw@HuschBlackwell.com
Backup Counsel for Petitioner

HUSCH BLACKWELL LLP
120 South Riverside Plaza, Suite 2200
Chicago, IL 60606
Tel. 312-655-1500
Fax. 312-644-1501
CERTIFICATE OF SERVICE

Pursuant to 37 C.F.R. § 42.105, Petitioner certifies that this Petition for Inter Partes Review and supporting evidence was served by Federal Express®, on November 21, 2017, to the Patent Owner owner of U.S. Patent No. 9,566,289, Anacor Pharmaceuticals, Inc., at their correspondence address of record according to USPTO PAIR:

MORGAN, LEWIS & BOCKIUS LLP (SF)
Attn: Todd Esker
One Market, Spear Street Tower, Suite 2800
San Francisco CA 94105

and that additional copies have been delivered to the address of the patent owner according to the assignments of record at the USPTO at:

ANACOR PHARMACEUTICALS, INC.
Attn: Ryan Walsh, Vice-President & Chief IP counsel
1020 East Meadow Circle
Palo Alto, CA 94303

and to additional counsel at the following addresses:

COVINGTON & BURLINGTON LLP
Attn: Andrea Reister, Enrique Longton, and George F. Pappas
One CityCenter, 850 Tenth Street, NW
Washington, DC 20001

On this the 21st day of November, 2017.

Respectfully submitted,

/Philip D. Segrest, Jr./
Philip D. Segrest Jr. (Reg. No. 39,021)
philip.segrest@huschblackwell.com
Lead Counsel for Petitioner
Eric J. Rakestraw (Reg. No. 68,740)
Eric.Rakestraw@HuschBlackwell.com
PTAB-ERakestraw@HuschBlackwell.com

Backup Counsel for Petitioner
HUSCH BLACKWELL LLP
120 South Riverside Plaza, Suite 2200
Chicago, IL 60606
Tel. 312-655-1500
Fax. 312-644-1501